Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells.

نویسندگان

  • P Werle
  • F Slemr
چکیده

In high resolution absorption spectrometers with conventional light sources, the signal-to-noise ratio (SNR) is usually limited by the thermal noise level of the detector-preamplifier combination, which is independent of the light source power. However, the noise in many laser absorption spectrometers is dominated by the excess or shot noise which is dependent on the transmitted laser power, and which in turn is dependent on the number of reflections in a multipass cell. The optimum absorption path length for a high frequency modulated (FM) and a conventional wavelength modulated (WM) diode laser absorption spectrometer is investigated in this paper. The major result is that, due to the power attenuation by the multipass cell, the best SNR of a shot noise limited FM spectrometer is achieved at substantially shorter absorption paths, when compared with the excess noise limited WM spectrometer. This finding implies that the implementation of the FM technique in absorption spectrometers with multipasscells can improve the SNR only by 1 order of magnitude. Although desirable, this is substantially less than the improvement of 2 orders of magnitude expected in quantum limited conditions with a single pass cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of New Laser Warning Technologies to Propose a New Optical Subsystem

In this paper, after a brief overview on laser warning system (LWS), a new structure for an optical array that is used in its optical subsystem is introduced. According to the laser threats’ wavelengths (0.5 – 1.6 µm) and our desirable field of view (FOV), we used 6 lenses for gathering the incident radiation and then optimized the optical array. Lenses’ radius, their se...

متن کامل

The advantage of using a diode laser instead of a Q-switched laser in photoacoustic imaging of tissues

Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be ...

متن کامل

Optimum signal-to-noise ratio in off-axis integrated cavity output spectroscopy.

The signal-to-noise ratio (SNR) in off-axis integrated cavity output spectroscopy (OA-ICOS) is investigated and compared to direct absorption spectroscopy using multipass absorption cells [tunable diode laser absorption spectroscopy (TDLAS)]. Applying measured noise characteristics of a near-IR tunable diode laser and detector, it is shown that the optimum SNR is not generally reached at the hi...

متن کامل

Enhanced Modulation and Noise Characteristics in 1.55 µm QD Lasers using Additional Optical Pumping

The modulation response, relative intensity noise (RIN) and frequency noise (FN) characteristics of quantum dot (QD) lasers are investigated theoretically in the presence of an external optical beam. Using small signal analysis of the rate equations for carriers and photons, it is demonstrated that by injecting excess carriers into the QDs excited state through optical pumping, the modulation r...

متن کامل

Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared.

We report on broadband absorption spectroscopy in the near IR using a multipass cell design based on highly reflecting mirrors in a confocal arrangement having the particular aim of achieving long optical paths. We demonstrate a path length of 314 m in a cell consisting of two sets of highly reflecting mirrors with identical focal length, spaced 0.5 m apart. The multipass cell covers this path ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 1991